微生物學系陳宜龍助理教授發表期刊論文
Direct Production of Bio-Recalcitrant Carboxyl-Rich Alicyclic Molecules Evidenced in a Bacterium-Induced Steroid Degradation Experiment
作者:Zijing Liu, Ruanhong Cai, Yi-Lung Chen, Xiaocun Zhuo, Chen He, Qiang Zheng, Ding He, Quan Shi, Nianzhi Jiao
Microbiology Spectrum (SCI)
卷:11 期:2
DOI:10.1128/spectrum.04693-22
Online:6 February 2023
出版日期:Apr 2023
中文介紹:
為了減少大氣中溫室氣體引發氣候變遷所造成的危害,「2050淨零排放」不僅是口號,越來越多國家紛紛立法,以此為目標,台灣也在今年(2023)年初通過「氣候變遷因應法」的三讀修正案,明確要求我國於2050年實現溫室氣體淨零排放,成為未來氣候治理的主要法律基礎。
然而,要實現永續發展目標,不僅需要增加再生能源(如風力和太陽能)的使用,採用直接從空氣用中捕獲二氧化碳等技術,還需要保持自然碳匯的功能,甚至提高其效果。然而,我們對於自然碳匯的認識僅限於生物進行光合作用後累積在體內的有機物,例如林木生長的森林碳匯(綠碳),對於大多數有機碳長期存留在環境中的原因以及這些有機碳的化學結構則知之甚少。事實上,在全球尺度下,土壤中的有機碳(黃碳)是所有植物累積的三倍以上,而海水中不易被分解、能長期存留的惰性溶解有機碳總量(藍碳)是所有植物的1.5倍。
然而,我們對於這兩種自然碳匯的認識及利用方法仍十分有限。因此,為實現永續發展目標,我們需要更深入了解自然碳匯,發掘更有效的利用方法。
本論文是和中國廈門大學合作的研究成果。研究結果顯示,類固醇經由微生物作用後所產生的代謝物很可能是海水中惰性溶解有機碳的組成份。
水域環境和沉積物中普遍分布著富含羧酸的脂環族分子(CRAM)。這類分子的特徵是惰性溶解有機碳的分子指紋,但其生成機制和化學結構目前仍知之甚少。過去的研究指出,類固醇等人為污染物可能是CRAM的前驅物,但缺乏實驗證據。
本研究以能夠分解類固醇的細菌為研究對象,將其培養於含有睾固酮(一種典型的類固醇)的液體培養基中90天。接著,萃取產生的代謝產物(TIM),進行分子特徵確認。然後,將TIM添加到天然的沿岸海水中進行額外的90天培養,以評估其生物可利用性。結果顯示,TIM中可以鑒定出1775個分子式,其中66.99%可歸類為CRAM。TIM的大部分被海水中微生物轉化和利用,但仍有638個分子式在培養期間仍然存在或增加。在這638個分子式中,有394個與南海深層海水樣本(500到2000米深;惰性溶解有機碳的代表)中的分子式一致。
與已知的睾固酮降解途徑的代謝物相比,我們列出了一個不容易被生物降解的分子式清單,並指出其可能的化學結構。其中一些與CRAM的定義相符。這些結果表明,類固醇激素可以被微生物直接生成為生物不易降解的CRAM,這可能有助於水域環境中惰性溶解有機碳庫的形成。本研究建立了類固醇與生物不易降解CRAM之間的生物學關聯。
研究事務組提醒:教師如有最新發表於AHCI、SSCI、SCI、EI、TSSCI、THCI、「東吳大學外語學門獎勵名單」之期刊論文,歡迎將相關資訊e-mail至rad@scu.edu.tw,研究發展處將會公告於校園頭條,以廣交流。
【文圖/研究事務組謝明秀專員】